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Abstract 

This paper reports on an evolutionary algorithm based method for solving the 

economic load dispatch (ELD) problem. The objective is to minimize the 

nonlinear function, which is the total fuel cost of thermal generating units, 

subject to the usual constraints. 

The IEEE 30 bus test system was used for testing and validation purposes. 

The results obtained demonstrate the effectiveness of the proposed method for 

solving the economic load dispatch problem. 
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Introduction 

 

The conventional economic load dispatch (ELD) problem of power generation 

involves allocation of power generation to different thermal units to minimize the operating 

cost subject to diverse equality and inequality constraints of the power system. This makes the 

ELD problem a large-scale highly nonlinear constrained optimization problem. 
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 It is therefore of great importance to solve this problem as quickly and accurately as 

possible. Conventional techniques offer good results, but when the search space is nonlinear 

and has discontinuities, these techniques become difficult to solve with a slow convergence 

ratio and not always seeking to the global optimal solution. New numerical methods are then 

needed to cope with these difficulties, specially, those with high speed search to the optimal 

and not being trapped in local minima.   

 The ELD problem has been solved via many traditional optimization methods, 

including: Gradient-based techniques, Newton methods, linear programming, and quadratic 

programming. Most of these techniques are not capable of solving efficiently optimization 

problems with a non-convex, non-continuous, and highly nonlinear solution space. 

In recent years, new optimization techniques based on the principles of natural 

evolution, and with the ability to solve extremely complex optimization problems, have been 

developed. These techniques, also known as evolutionary algorithms, search for the solution 

of optimization problems, using a simplified model of the evolution process found in nature 

[1]. Differential Evolution (DE) is one of these recently developed evolutionary computation 

techniques [2, 3]. Differential evolution improves a population of candidate solutions over 

several generations using the mutation, crossover and selection operators in order to reach an 

optimal solution. Differential evolution presents great convergence characteristics and 

requires few control parameters, which remain fixed throughout the optimization process and 

need minimum tuning [4].  

In this paper, a differential evolution based technique is presented and used to solve 

the ELD problem under some equality and inequality constraints. An application was 

performed on the IEEE 30 bus – 6 generators test system. Simulation results confirm the 

advantage of computation rapidity and solution accuracy.  

 

 

The Economic Load Dispatch Problem 

 

The classical economic dispatch problem is an optimization problem that determines 

the power output of each online generator that will result in a least cost system operating state. 

The ELD problem can then be written in the following form: 
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Minimize f(x)         (1) 

Subject to: g(x) = 0       (2) 

  h(x) ≤ 0       (3) 

f(x) is the objective function, g(x) and h(x) are respectively the set of equality and inequality 

constraints. x is the vector of control and state variables.  

 

 

Objective function 

The objective of the ELD is to minimize the total system cost by adjusting the power 

output of each of the generators connected to the grid. The total system cost is modeled as the 

sum of the cost function of each generator (1). The generator cost curves are modeled with 

smooth quadratic functions, given by: 
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where ng is the number of online thermal units, Pgi is the active power generation at unit i and 

ai, bi and ci are the cost coefficients of the ith generator.  

 

 

Equality constraints 

The equality constraint is represented by the power balance constraint that 

reduces the power system to a basic principle of equilibrium between total system generation 

and total system loads. Equilibrium is only met when the total system generation ( ) 

equals the total system load (PD) plus system losses (PL) as it is shown in (5).  
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The exact value of the system losses can only be determined by means of a power flow 

solution. The most popular approach for finding an approximate value of the losses is by way 

of Kron’s loss formula (6), which approximates the losses as a function of the output level of 

the system generators. 
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Inequality constraints 

Generating units have lower (P gi min) and upper (P gi max) production limits, which are 

directly related to the design of the machine. These bounds can be defined as a pair of 

inequality constraints, as follows: 

 

maxgigimingi PPP ≤≤  (7)

 

 

Overview of Differential Evolution Algorithm 

 

The differential Evolution algorithm (DE) is a population based algorithm like genetic 

algorithm using the similar operators; crossover, mutation and selection. The main difference 

in constructing better solutions is that genetic algorithms rely on crossover while DE relies on 

mutation operators. This main operation is based on the differences of randomly sampled 

pairs of solutions in the population. 

 The algorithm uses mutation operation as a search mechanism and selection operation 

to direct the search toward the prospective regions in the search space. The DE algorithm also 

uses a non uniform crossover that can take child vector parameters from one parent more 

often than it does from other. By using the components of the existing population members to 

construct trial vectors, the recombination (crossover) operator efficiently shuffles information 

about successful combinations, enabling the search for a better solution space. 

 

DE optimization process 

An optimization task consisting of D parameters can be presented by a D-dimensional 

vector. In DE, a population of NP solution vectors is randomly created at the start. This 

population is successfully improved over G generations by applying mutation, crossover and 

selection operators, to reach an optimal solution [3, 4]. The main steps of the DE algorithm 

are given bellow: 
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Initialization 
Evaluation 
Repeat 
Mutation 
Crossover 
Evaluation 
Selection 
Until (Termination criteria are met) 
 

Mutation 

The mutation operator creates mutant vectors  by perturbing a randomly selected 

vector xa with the difference of two other randomly selected vectors xb and xc, 
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where xa, xb and xc are randomly chosen vectors among the NP population, and a ≠ b ≠ c. xa, 

xb and xc are selected anew for each parent vector. The scaling constant F is an algorithm 

control parameter used to adjust the perturbation size in the mutation operator and improve 

algorithm convergence. 

 

 

Crossover 

 

The crossover operation generates trial vectors xi
’’ by mixing the parameters of the 

mutant vectors xi
’ with the target vectors xi according to a selected probability distribution, 
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(9)

where i=1, …, NP and j=1,…, D; q is a randomly chosen index ∈  {1,…,Np} that guarantees 

that the trial vector gets at least one parameter from the mutant vector; ρj s a uniformly 

distributed random number within [0 , 1] generated anew for each value of j. The crossover 

constant CR is an algorithm parameter that controls the diversity of the population and aids the 

algorithm to escape from local minima. xj,i
‘(G) and xj,i

”(G) are the jth parameter of the ith target 

vector, mutant vector, and trial vector at generation G, respectively. 
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Selection 

The selection operator forms the population by choosing between the trial vectors and 

their predecessors (target vectors) those individuals that present a better fitness or are more 

optimal according to (10). 
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(10)

i=1, …, NP. 

 

This optimization process is repeated for several generations, allowing individuals to 

improve their fitness as they explore the solution space in search of optimal values. 

 DE has three essential control parameters: the scaling factor (F), the crossover 

constant (CR) and the population size (NP). The scaling factor is a value in the range [0, 2] that 

controls the amount of perturbation in the mutation process. The crossover constant is a value 

in the range [0, 1] that controls the diversity of the population. The population size determines 

the number of individuals in the population and provides the algorithm enough diversity to 

search the solution space. 

 

Control parameter selection 

 Proper selection of control parameters is very important for algorithm success and 

performance. The optimal control parameters are problem specific. Therefore, the set of 

control parameters that best fit each problem have to be chosen carefully. The most common 

method used to select control parameters is parameter tuning. Parameter tuning adjusts the 

control parameters through testing until the best settings are determined. Typically, the 

following ranges are good initial estimates: F = [0.5, 0.6], CR = [0.75, 0.90], and NP = [3*D, 

8*D] [5]. 

 In order to avoid premature convergence, F or NP should be increased, or CR should be 

decreased. Larger values of F result in larger perturbations and better probabilities to escape 

from local optima, while lower CR preserves more diversity in the population thus avoiding 

local optima.  
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Constraint handling 

Since most evolutionary algorithms such as differential evolution were originally 

conceived to solve unconstrained problems, various constraint-handling techniques have been 

developed. One possible strategy is to generate and keep control variables in the feasible 

region as follows [6]: 
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(11)

i=1, …, NP and j=1,…, D. 

where xj,i
min and xj,i

max are the lower and upper bounds of the jth decision parameter, 

respectively.  

Penalty functions can be used whenever there are violations to some equality and/or 

inequality constraints [7]. Basically, the objective function f(x) is substituted by a fitness 

function f’(x) that penalizes the fitness whenever the solution contains parameters that violate 

the problem constraints, 

)x(Penalty)x(f)x(f ' +=  (12)

In this paper, the exterior penalty function method is applied to the equality constraints 

[7]. The new objective function is than given by 
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(13)

where Ki is a positive constant number, reflecting the constraint weight. The specification of 

these weighting factors depends on how strongly we feel about satisfying the constraints. 

 

 

Test Problem and Results 

 

The economic load dispatch (ELD) problem was solved using the differential 

evolution (DE) algorithm. The simulation was performed on the IEEE 30 bus – 6 generators 

test system described in [8]. Table 1 shows the data for the six generators.  

The parameters used for the DE algorithm are presented as follows: 
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• Scaling factor (F) was set to 0.70, the crossover constant (CR) to 0.99 and the population 

size (NP) to 26. The load was set to 2.834 pu on a 100 MVA base. The penalty factor (K) 

of the equality constraint was set to 5×105.  

To demonstrate the effectiveness of the DE algorithm, two different cases were 

considered as follows (see Table 1): 

 

Table 1. Generators Data of the IEEE 30 Bus Test System 

 Gen. 1 Gen. 2 Gen. 3 Gen. 4 Gen. 5 Gen. 6 
a [$/h] 0 0 0 0 0 0 
b [$/MWh] 2.00 1.75 1.00 3.25 3.00 3.00 
c [$/MW2 h] 0.00375 0.0175 0.0625 0.00834 0.025 0.025 
Pgmin (MW) 50 20 15 10 10 12 
Pgmax (MW) 200 80 50 35 30 40 

 

 

Case (1) 

The system is considered as lossless and only the generation capacity constraints are 

considered. The results obtained with the DE algorithm are shown in Table 2. The variation of 

the total fuel cost function during the optimization process is shown in Fig. 1. The 

convergence was obtained with 0.34 seconds and 85 generations.  

The results of the proposed approach were compared to those using the conventional 

Newton’s method [9]. Comparison results are given in Table 2. From this table, it can be seen 

that DE algorithm gives a comparable solution than Newton method.  

 

Table 2. Simulation Results without losses (Case 1) 

Parameters Newton DE 
Pg1 (MW) 185.400 184.095
Pg2 (MW) 46.872 47.301 
Pg3 (MW) 19.124 18.842 
Pg4 (MW) 10.000 10.866 
Pg5 (MW) 10.000 10.179 
Pg6 (MW) 12.000 12.116 
Total generation (MW) 283.40 283.40 
Cost ($/h) 767.60 767.78 
CPU time (sec.) 0.09 0.34 
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Figure 1. Convergence of the fuel cost function (case 1) 

 

 

 

Case (2) 

In this case, the transmission power loss has been taken into account. Convergence of 

the total fuel cost function is shown in Fig. 2. The results obtained with the DE algorithm 

were compared to those reported using gradient projection method (GPM) [8], successive 

linear programming (SLP) [10], Quasi-Newton (QN) [11] and genetic algorithm (GA) [11]. 

The comparison results are summarized in Table 3.  

 
Table 3. Simulation Results with losses (Case 2) 

Parameters GPM  
[8] 

SLP 
[10] 

QN  
[11] 

GA 
[11] DE 

Pg1 (MW) 187.22 175.25 170.24 179.37 177.51 
Pg2 (MW) 53.78 48.34 44.95 44.24 48.61 
Pg3  (MW) 16.95 21.21 28.90 24.61 20.91 
Pg4 (MW) 11.29 23.60 17.48 19.90 21.64 
Pg5 (MW) 11.29 12.25 12.17 10.71 12.47 
Pg6 (MW) 13.35 12.33 18.47 14.09 12.02 
Total Generation (MW) 293.88 292.98 292.21 292.92 293.16 
Loss (MW) 10.49 9.57 8.80 9.52 9.79 
Cost ($/h) 804.85 803.08 807.78 803.69 803.07 
CPU time (sec.) 4.32 1.12 n/a 7.00 0.73 
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Figure 2. Convergence of the fuel cost function (case 2) 

 

 

From the results it is clear that DE approach gives the best global optimum solution 

with less computation time than the other techniques. The results clearly show the ability of 

DE algorithm to provide a fast global optimum solution. 

 

 

Conclusions 

 

In this paper, an evolutionary algorithm was applied to solve the economic load 

dispatch problem. Simulation results demonstrate the ability of the DE-based technique to 

solve efficiently the ELD problem. The approach was tested on the IEEE 30-bus 6-generators 

system. The results were compared with those obtained from other optimization techniques 

and has been found to obtain the global optimum solution with less computation time. 

Penalty strategy selection for constraint handling is very important for the success and 

performance of DE algorithm. The use of static or constant penalties is not suitable for all 

constraints, but improves computational resources since they require less floating point 

operations than dynamic penalties. 

 A correct set of control parameters such as the scaling factor, crossover constant and 

sufficient members may lead to very successful results in reasonable computational time. 
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